Answer:
3 over 2
Step-by-step explanation:
Given the expression
[tex]\frac{3^{-4} \times 2^3 \times 3^2}{2^4 \times 3^{-3}}[/tex]
Using the law of indices to simplify
[tex]= \frac{3^{-4} \times 3^2 \times 2^3}{2^4 \times 3^{-3}}\\= \frac{3^{-4+2} \times 2^3}{2^4 \times 3^{-3}}\\= \frac{3^{-2} \times 2^3}{2^4 \times 3^{-3}}\\= \frac{3^{-2}}{3^{-3}} \times \frac{2^3}{2^4} \\= 3^{-2+3} \times 2^{3-4}\\= 3^1 \times 2^{-1}\\= 3 \times \frac{1}{2}\\= \frac{3}{2}[/tex]
Hence option A is correct 3 over 2