Respuesta :

Answer:

B mc015-3.j

Step-by-step explanation:

hope this helps!

Equivalent expressions are expressions of equal value.

The equivalent expressions of  [tex]\mathbf{(\frac{r}{s})(6)} }[/tex] are [tex]\mathbf{\frac{3(6) - 1}{2(6) + 1}}[/tex] and  [tex]\mathbf{ \frac{17}{13}}[/tex]

The expressions are given as:

[tex]\mathbf{r(x) = 3x - 1}[/tex]

[tex]\mathbf{s(x) = 2x + 1}[/tex]

[tex]\mathbf{(\frac{r}{s})(6)}[/tex] is calculated as follows:

We have:

[tex]\mathbf{(\frac{r}{s})(x) = \frac{r(x)}{s(x)}}[/tex]

Substitute expressions for r(x) and g(x)

[tex]\mathbf{(\frac{r}{s})(x) = \frac{3x - 1}{2x + 1}}[/tex]

Substitute 6 for x

[tex]\mathbf{(\frac{r}{s})(6) = \frac{3(6) - 1}{2(6) + 1}}[/tex]

Expand

[tex]\mathbf{(\frac{r}{s})(6) = \frac{18- 1}{12 + 1}}[/tex]

[tex]\mathbf{(\frac{r}{s})(6) = \frac{17}{13}}[/tex]

Hence, the equivalent expressions of  [tex]\mathbf{(\frac{r}{s})(6)} }[/tex] are [tex]\mathbf{\frac{3(6) - 1}{2(6) + 1}}[/tex] and  [tex]\mathbf{ \frac{17}{13}}[/tex]

Read more about equivalent expressions at:

https://brainly.com/question/2737200

Q&A Education