Select all the equations that are true. 24 x − 8 = 8 ( 3 x − 1 ) 24 x − 8 = 8 ( 3 x − 1 ) 6 m − 15 = 3 ( 2 m − 5 ) 6 m − 15 = 3 ( 2 m − 5 ) − 7 x − 1 = − 1 ( 7 x + 1 ) − 7 x − 1 = − 1 ( 7 x + 1 ) 16 a + 24 b = 8 ( 8 a + 16 b ) 16 a + 24 b = 8 ( 8 a + 16 b ) − 8 x − 12 y − 16 = − 4 ( 2 x + 3 y + 4 ) − 8 x − 12 y − 16 = − 4 ( 2 x + 3 y + 4 )

Respuesta :

Answer:

[tex]24x - 8 = 8 ( 3 x - 1 )[/tex]

[tex]6 m - 15 = 3 ( 2 m - 5 )[/tex]

[tex]-7 x - 1 = - 1 ( 7 x + 1 )[/tex]

[tex]-8 x -12 y - 16 = - 4 ( 2 x + 3 y + 4 )[/tex]

Step-by-step explanation:

Required

Select which of the equation is true

[tex]24x - 8 = 8 ( 3 x - 1 )[/tex]

Open the bracket on the right hand side

[tex]24x - 8 = 8 * 3 x - 8 *1[/tex]

[tex]24x - 8 = 24x - 8[/tex]

Both sides of the equation are equal.

Hence, this equation is true

[tex]6 m - 15 = 3 ( 2 m - 5 )[/tex]

Open the bracket on the right hand side

[tex]6m - 15 = 3 * 2m - 3 * 5[/tex]

[tex]6m - 15 = 6m - 15[/tex]

Both sides of the equation are equal.

Hence, this equation is true

[tex]-7 x - 1 = - 1 ( 7 x + 1 )[/tex]

Open the bracket on the right hand side

[tex]-7x - 1 = -1 * 7x -1 * 1[/tex]

[tex]-7x - 1 = -7x -1[/tex]

Both sides of the equation are equal.

Hence, this equation is true

[tex]16 a + 24 b = 8 ( 8 a + 16 b )[/tex]

Open the bracket on the right hand side

[tex]16a + 24b = 8 * 8a + 8 * 16b[/tex]

[tex]16a + 24b = 64a + 128b[/tex]

Both sides of the equation are not equal.

Hence, this equation is false

[tex]-8 x -12 y - 16 = - 4 ( 2 x + 3 y + 4 )[/tex]

Open the bracket on the right hand side

[tex]-8 x -12 y - 16 = - 4* 2 x -4 * 3 y -4 * 4[/tex]

[tex]-8 x -12 y - 16 = -8x -12y -16[/tex]

Both sides of the equation are equal.

Hence, this equation is true

Q&A Education