Use the derivative function, f ' ( x ) f ′ ( x ) , to determine where the function f ( x ) = − 4 x 2 + 13 x − 7 f ( x ) = - 4 x 2 + 13 x - 7 is increasing.

Respuesta :

Given:

The function is

[tex]f(x)=-4x^2+13x-7[/tex]

To find:

The interval on which the function is increasing.

Solution:

We have,

[tex]f(x)=-4x^2+13x-7[/tex]

Differentiate with respect to x.

[tex]f'(x)=-4(2x)+13(1)-(0)[/tex]

[tex]f'(x)=-8x+13[/tex]

Equate f'(x)=0.

[tex]-8x+13=0[/tex]

[tex]-8x=-13[/tex]

[tex]x=\dfrac{-13}{-8}[/tex]

[tex]x=1.625[/tex]

The point x=1.625 divides the number line in two parts [tex](-\infty, 1.625)\text{ and }(1.625, \infty)[/tex].

f'(x) is positive for [tex](-\infty, 1.625)[/tex]. It means the function is increasing on this interval.

f'(x) is negative for [tex](1.625,\infty)[/tex]. It means the function is decreasing on this interval.

At x=1.625, f'(x) is 0. It is turning point so it will included in both intervals.

Therefore, the function is increasing on [tex](-\infty, 1.625][/tex].

Q&A Education