Lauren plans to deposit $9000 into a bank account at the beginning of next month and $200/month into the same account at the end of that month and at the end of each subsequent month for the next 7 years. If her bank pays interest at a rate of 4%/year compounded monthly, how much will Lauren have in her account at the end of 7 years

Respuesta :

Answer:

The answer is "$ 30614.427"

Explanation:

Given value:

[tex]P = \$ \ 9000\\\\r= 4 \% \ \ = \frac{0.04}{12} \ = 0.003\\\\n= 12 \\\\t= 7\\\\ a= \$ \ 200[/tex]

Formula:

[tex]Future\ value = P \times (1+\frac{r}{n})^{nt-1} + a ( \frac{1+{\frac{r}{n}}^{nt} -1}{\frac{r}{n}})[/tex]

                      [tex]= 9000 \times (1+0.003)^{12 \times 7-1} + 200 ( \frac{(1+{0.003}^{12 \times 7}) -1}{0.003}) \\\\ = 9000 \times (1.003)^{84-1} + 200 ( \frac{{1.003}^{84} -1}{0.003})\\\\ = 9000 \times (1.003)^{83} + 200 ( \frac{{1.003}^{84} -1}{0.003})\\\\ = 9000 \times 1.28226397 + 200 ( \frac{1.28611077 -1}{0.003})\\\\ = 11,540.3757 + 200 ( \frac{0.28611077}{0.003})\\\\ = 11,540.3757 + 200 \times 95.3702567\\\\= 11,540.3757 + 19,074.0513\\\\=30614.427[/tex]

Q&A Education