Respuesta :

Given:

[tex]F(x)=f(g(x))[/tex]

where, [tex]f(-1)=5,f'(-1)=3,f'(5)=3,g(5)=-1,g'(5)=8[/tex].

To find:

The value of [tex]F'(5)[/tex].

Solution:

We have,

[tex]F(x)=f(g(x))[/tex]

Differentiate with respect to x.

[tex]F'(x)=\dfrac{d}{dx}f(g(x))[/tex]

Using chain rule, we get

[tex]F'(x)=f'(g(x))g'(x)[/tex]

Now, put x=5.

[tex]F'(5)=f'(g(5))g'(5)[/tex]

[tex]F'(5)=f'(-1)\times 8[/tex]       [tex][\because g(5)=-1,g'(5)=8][/tex]

[tex]F'(5)=3\times 8[/tex]        [tex][\because f'(-1)=3][/tex]

[tex]F'(5)=24[/tex]

Therefore, the value of [tex]F'(5)[/tex] is 24.

Q&A Education