Respuesta :

The complete question is

find the slope of the tangent line and the equation of the tangent line at the given point, [tex]x^2y-5xy^2[/tex][tex]+6=0[/tex] at the point (3,1).

Answer:

Tangent  = 1/23 , equation of tangent  = 23y - x = 20

Step-by-step explanation:

We are given the equation

[tex]x^2y-5xy^2[/tex][tex]+6=0[/tex]

upon differentiation the given function we get

d ([tex]x^2y-5xy^2[/tex][tex]+6=0[/tex]) /dt

= [tex]2xy +x^2dy/dx - 5y^2 -10xy dy/dx =0[/tex]

upon substituting x=3 ,y=1 we will get

dy/dx = 1/23

now the equation of the tangent will be

y-1 = 1/23 (x-3)

23 (y-1) = x- 3

23y - 23 = x -3

23y - x = 20

Q&A Education