In a recent survey it was found that Americans drink an average of 23.2 gallons of bottled water in a year. If the standard deviation is 2.7 gallons and the variable is normally distributed, find the probability that a randomly selected American drinks more than 25 gallons of bottled water in a year. What is the probability that the selected person drinks between 22 and 30 gallons

Respuesta :

Answer:

a) 0.25249

b) 0.66575

Step-by-step explanation:

We solve this question using z score formula

= z = (x-μ)/σ, where

x is the raw score

μ is the population mean = 23.2 gallons

σ is the population standard deviation = 2.7 gallons

a) Find the probability that a randomly selected American drinks more than 25 gallons of bottled water in a year.

For x = 25 gallons

z = 25 - 23.2/2.7

z = 0.66667

Probability value from Z-Table:

P(x<25) = 0.74751

P(x>25) = 1 - P(x<25)

1 - 0.74751

= 0.25249

The probability that a randomly selected American drinks more than 25 gallons of bottled water in a year is 0.25249

2) What is the probability that the selected person drinks between 22 and 30 gallons

For x = 22 gallons

z = 22 - 23.2/2.7

z = -0.44444

Probability value from Z-Table:

P(x = 22) = 0.32836

For x = 30 gallons

z = 30 - 23.2/2.7

z =2.51852

Probability value from Z-Table:

P(x = 30) = 0.99411

The probability that the selected person drinks between 22 and 30 gallons is

P(x = 30) - P(x = 22)

= 0.99411 - 0.32836

= 0.66575

Q&A Education