Step-by-step explanation:
Given [tex]g'(x) = g^{-2}, x> 0\ g(1) = 0 \ and \ g(2) = 0[/tex]
To get g(x), we will have to integrate g'(x)
[tex]g(x) = \int\limits {x^{-2}} \, dx\\ g(x) = \frac{x^{-2+1}}{-2+1} + C\\ g(x) = -x^{-1} + C\\g(x) = -x^{-1} + C\\[/tex]
If g(1) = 0, this means at x = 1, g(x) = 0
0 = -1⁻¹ + C
C= 1
Substitute C = 1 into the function
g(x) = -x⁻¹ + 1
If g(2) = 0, this means at x = 2, g(x) = 0
0 = -2⁻¹ + C
C= 2⁻¹
C = 1/2
Substitute C = 2 into the function
g(x) = -x⁻¹ + 1/2