An alloy has a yield strength of 805 MPa and an elastic modulus of 107 GPa. Calculate the modulus of resilience for this alloy (in J/m3, which is equivalent to Pa) given that it exhibits linear elastic stress-strain behavior. J/m3

Respuesta :

Answer:

The modulus of resilience is [tex]3.028\times 10^{6}[/tex] joules per cubic meter.

Explanation:

At first we assume that allow behaves elastically, then the formula for the modulus of resilience ([tex]U_{r}[/tex]), measured in joules per cubic meter, is:

[tex]U_{r} = \frac{\sigma_{y}^{2}}{2\cdot E}[/tex] (Eq. 1)

Where:

[tex]\sigma_{y}[/tex] - Yield strength, measured in pascals.

[tex]E[/tex] - Modulus of elasticity, measured in pascals.

If we know that [tex]\sigma_{y} = 805\times 10^{6}\,Pa[/tex] and [tex]E = 107\times 10^{9}\,Pa[/tex], then the modulus of resilience is:

[tex]U_{r} = \frac{(805\times 10^{6}\,Pa)^{2}}{2\cdot (107\times 10^{9}\,Pa)}[/tex]

[tex]U_{r} = 3.028\times 10^{6}\,\frac{J}{m^{3}}[/tex]

The modulus of resilience is [tex]3.028\times 10^{6}[/tex] joules per cubic meter.

Q&A Education