Respuesta :
Answer:
See Explanation
Step-by-step explanation:
Required
Complete the blanks
Step 1: The unknowns
[tex]x = the\ number[/tex]
[tex]3x = the\ other\ number[/tex]
Step 2: Sum of Reciprocals
The implies that both numbers be inversed, then added together.
i.e.
[tex]\frac{1}{x} + \frac{1}{3x} = 4[/tex]
Step 3: Solve for x
[tex]\frac{1}{x} + \frac{1}{3x} = 4[/tex]
Factorize
[tex]\frac{1}{x}(1 + \frac{1}{3}) = 4[/tex]
[tex]\frac{1}{x}(\frac{3 + 1}{3}) = 4[/tex]
[tex]\frac{1}{x}(\frac{4}{3}) = 4[/tex]
[tex]\frac{4}{3x} = 4[/tex]
Cross multiply
[tex]4 = 3x * 4[/tex]
[tex]4 = 12x[/tex]
Solve for x
[tex]x = \frac{4}{12}[/tex]
[tex]x = \frac{1}{3}[/tex]
Step 4; Verify
[tex]\frac{1}{x} + \frac{1}{3x} = 4[/tex]
Substitute [tex]x = \frac{1}{3}[/tex]
[tex]\frac{1}{1/3} + \frac{1}{3*1/3} = 4[/tex]
[tex]3 + \frac{1}{1} = 4[/tex]
[tex]3 + 1 = 4[/tex]