A football is kicked toward an end zone with an initial vertical velocity of 30 ft/s. The function h(t) = -16+ 30t models the height h (in feet) of the football at time t (in seconds). Which statement about the height of the football is true? A.The football does not reach a height of 15ft B. The football reaches a height of exactly 15ft C.The football reaches a height that is greater than 15ft

Respuesta :

Answer:

A. The football does not reach a height of 15ft

Step-by-step explanation:

Given

[tex]h(t) = -16t^2 + 30t[/tex]

Required

Determine which of the options is true

The option illustrates the height reached by the ball.

To solve this, we make use of maximum of a function

For a function f(x)

Such that:

[tex]f(x) = ax^2 + bx + c[/tex]:

[tex]f(\frac{-b}{2a}) = maximum/minimum[/tex]

i.e we first solve for [tex]\frac{-b}{2a}[/tex]

Then substitute [tex]\frac{-b}{2a}[/tex] for x in [tex]f(x) = ax^2 + bx + c[/tex]

In our case:

First we need to solve [tex]\frac{-b}{2a}[/tex]

Then substitute [tex]\frac{-b}{2a}[/tex] for t in [tex]h(t) = -16t^2 + 30t[/tex]

By comparison:

[tex]b = 30[/tex]

[tex]c = -16[/tex]

[tex]\frac{-b}{2a} = \frac{-30}{2 * -16}[/tex]

[tex]\frac{-b}{2a} = \frac{-30}{-32}[/tex]

[tex]\frac{-b}{2a} = \frac{30}{32}[/tex]

[tex]\frac{-b}{2a} = \frac{15}{16}[/tex]

Substitute [tex]\frac{15}{16}[/tex] for t in [tex]h(t) = -16t^2 + 30t[/tex]

[tex]h(\frac{15}{16}) = -16(\frac{15}{16})^2 + 30(\frac{15}{16})[/tex]

[tex]h(\frac{15}{16}) = -16(\frac{225}{256}) + \frac{450}{16}[/tex]

[tex]h(\frac{15}{16}) = -(\frac{225}{16}) + \frac{450}{16}[/tex]

[tex]h(\frac{15}{16}) = \frac{-225 + 450}{16}[/tex]

[tex]h(\frac{15}{16}) = \frac{225}{16}[/tex]

[tex]h(\frac{15}{16}) = 14.0625[/tex]

This implies that the maximum height reached is 14.0625ft.

So, the option that answers the question is A because [tex]14.0625 < 15[/tex]

Q&A Education