Respuesta :

Given :

A = 25000

P = 20000

r % = 9.6 % = 0.096

n = 12

To Find :

The time taken say t.

Solution :

We know, compound interest is given by :

[tex]A=P(1+\dfrac{r}{n})^{n.t}[/tex]

Taking log both sides :

[tex]A=P(1+\dfrac{r}{n})^{n.t}\\\\log\ \dfrac{A}{P}= n.t\times log( 1+\dfrac{r}{n})\\\\t =\dfrac{1}{n}\times \dfrac{log\ \dfrac{A}{P}}{log(1+\dfrac{r}{n})}\\\\\\t=\dfrac{1}{12}\times \dfrac{log\ \dfrac{25000}{20000}}{log(1+\dfrac{0.096}{12})}\\\\\\t=2.33\ years[/tex]

Hence, this is the required solution.

Q&A Education