Respuesta :
Answer:
g(x)=1/x-1-6
Step-by-step explanation:
Answer on APEX. hope this helps
Transformations are used to move a function from one position to another. The new function g(x) is [tex]g(x) = \frac{1}{x-1} - 6[/tex]
Given that
[tex]f(x) = \frac 1x[/tex]
When shifted 6 units down. the rule of transformation is:
[tex](x,f(x)) \to (x,f(x) - 6)[/tex]
So, we have:
[tex]f'(x) = f(x) - 6[/tex]
[tex]f'(x) = \frac 1x - 6[/tex]
When shifted 1 unit left. the rule of transformation is:
[tex](x,g(x)) \to (x -1,f'(x))[/tex]
So, we have:
[tex]g(x) = f'(x - 1)[/tex]
[tex]g(x) = \frac{1}{x-1} - 6[/tex]
Hence, the new function g(x) is [tex]g(x) = \frac{1}{x-1} - 6[/tex]
Read more about function transformation at:
https://brainly.com/question/12865301