Solve this equation, and show work. worth 40 points.
Answer:
[tex]b=-3[/tex]
Step-by-step explanation:
We have:
[tex]25^b\cdot 125^{b+2}=125^b[/tex]
Notice that 125 is the same as 5³. So:
[tex]25^b\cdot ((5)^3)^{b+2}=((5)^3)^b[/tex]
Also, 25 is the same as 5². So:
[tex]((5)^2)^b\cdot ((5)^3)^{b+2}=((5)^3)^b[/tex]
Power of a power property:
[tex]5^{2b}\cdot 5^{3(b+2)}=5^{3b}[/tex]
Power of a product property:
[tex]5^{2b+3(b+2)}=5^{3b}[/tex]
Since they have the same base, the exponents are equal. So:
[tex]2b+3(b+2)=3b[/tex]
Solve for b. Distribute on the left:
[tex]2b+3b+6=3b[/tex]
Combine like terms on the left:
[tex]5b+6=3b[/tex]
Subtract 5b from both sides:
[tex]6=-2b[/tex]
Divide both sides by -2. So, the value of b is:
[tex]b=-3[/tex]
And we're done!