find the measures of arc FBD
Answer:
Option (4)
Step-by-step explanation:
[tex]m(\widehat{FC})[/tex] = 180° [FC is the diameter]
[tex]m(\widehat{FC})=m(\widehat{FB})+m(\widehat{BC})[/tex]
180° = 125° + [tex]m(\widehat{BC})[/tex]
[tex]m(\widehat{BC})=180-125[/tex] = 55°
[tex]m(\widehat{FBD})=360-m(\widehat{FED})[/tex]
[tex]=360-[m(\widehat{FE})+m(\widehat{ED})][/tex]
[tex]=360-[m(\widehat{BC})+m(\widehat{ED})][/tex] [Since [tex]m(\widehat{FE})=m(\widehat{BC})[/tex] arcs created by vertical angles]
[tex]=360-(55+56)[/tex]
= 249°
Therefore, Option (4) will be the answer.