contestada

If \sqrt{6x-9}=x
6x−9

=xsquare root of, 6, x, minus, 9, end square root, equals, x, what is the value of xxx ?

Respuesta :

Answer:

[tex]x = 3[/tex]

Explanation:

Given

[tex]\sqrt{(6x - 9)} = x[/tex]

Required

Find x

[tex]\sqrt{(6x - 9)} = x[/tex]

Take Square of both sides

[tex]6x - 9 = x\²[/tex]

Convert to a quadratic equation

[tex]x\² - 6x + 9 = 0[/tex]

Expand

[tex]x\² - 3x - 3x + 9 = 0[/tex]

Factorize

[tex]x(x - 3) - 3(x - 3) = 0[/tex]

[tex](x - 3)(x - 3) = 0[/tex]

[tex](x - 3)\² = 0[/tex]

Take square root of both sides

[tex]x - 3 = 0[/tex]

Add 3 to both sides

[tex]x = 3[/tex]

The value of x is 3 twice

Given the equation [tex]\sqrt{6x-9}=x[/tex], we need to get the value of x;

Square both sides of the equation:

[tex](\sqrt{6x-9})^2=x^2\\6x - 9 = x^2\\[/tex]

Equate the result to zero

[tex]x^2-6x+9=0\\x^2-3x-3x+9 =0\\x(x-3)-3(x-3) = 0\\(x-3)(x-3) =0\\x= 3 \ twice[/tex]

Hence the value of x is 3 twice

Learn more on equation here: https://brainly.com/question/20779193

Q&A Education