Respuesta :
Answer:
(a). The magnitude of the net force is [tex](2.1\times10^{-18}\ N)k[/tex]
(b). The magnitude of the net force is [tex](4.23\times10^{-19}\ N)k[/tex]
(c). The magnitude of the net force is [tex](8.4\times10^{-19}\ N)i+(12.6\times10^{-19}\ N)k[/tex]
Explanation:
Given that,
Magnetic field [tex]B=-3.54\times10^{-3}i\ T[/tex]
Velocity = 2230j m/s
We know that,
The net force acting on the proton is equal to the sum of electric and magnetic force.
[tex]F=F_{e}+F_{B}[/tex]
(a). If the electric field is in the positive z direction and has a magnitude of 5.25 V/m,
We need to calculate the magnitude of the net force acting on the proton
Using formula of net force
[tex]F_{net}=e(E+v\times B)[/tex]
Put the value into the formula
[tex]F_{net}=1.6\times10^{-19}(5.25k+2230\times-3.54\times10^{-3}(j\times i))[/tex]
[tex]F_{net}=1.6\times10^{-19}(5.25k+2230\times-3.54\times10^{-3}(-k))[/tex]
[tex]F_{net}=(2.1\times10^{-18}\ N)k[/tex]
(b). If the electric field is in the negative z direction and has a magnitude of 5.25 V/m,
We need to calculate the magnitude of the net force acting on the proton
Using formula of net force
[tex]F_{net}=e(E+v\times B)[/tex]
Put the value into the formula
[tex]F_{net}=1.6\times10^{-19}(-5.25k+2230\times-3.54\times10^{-3}(j\times i))[/tex]
[tex]F_{net}=1.6\times10^{-19}(-5.25k+2230\times-3.54\times10^{-3}(-k))[/tex]
[tex]F_{net}=(4.23\times10^{-19}\ N)k[/tex]
(c). If the electric field is in the positive x direction and has a magnitude of 5.25 V/m
We need to calculate the magnitude of the net force acting on the proton
Using formula of net force
[tex]F_{net}=e(E+v\times B)[/tex]
Put the value into the formula
[tex]F_{net}=1.6\times10^{-19}(5.25i+2230\times-3.54\times10^{-3}(j\times i))[/tex]
[tex]F_{net}=(8.4\times10^{-19}\ N)i+(12.6\times10^{-19}\ N)k[/tex]
Hence, (a). The magnitude of the net force is [tex](2.1\times10^{-18}\ N)k[/tex]
(b). The magnitude of the net force is [tex](4.23\times10^{-19}\ N)k[/tex]
(c). The magnitude of the net force is [tex](8.4\times10^{-19}\ N)i+(12.6\times10^{-19}\ N)k[/tex]