A spinning wheel on a fireworks display is initially rotating in a counterclockwise direction. The wheel has an angular acceleration of -4.46 rad/s2. Because of this acceleration, the angular velocity of the wheel changes from its initial value to a final value of -31.4 rad/s. While this change occurs, the angular displacement of the wheel is zero. (Note the similarity to that of a ball being thrown vertically upward, coming to a momentary halt, and then falling downward to its initial position.) Find the time required for the change in the angular velocity to occur.

Respuesta :

Answer:

The time for the change in the angular velocity to occur is 14.08 secs

Explanation:

From the question,

the angular acceleration is - 4.46 rad/s²

Angular acceleration is given by the formula below

[tex]\alpha =\frac{\omega -\omega _{o} }{t - t_{o} }[/tex]

Where [tex]\alpha[/tex] is the angular acceleration

[tex]\omega[/tex] is the final angular velocity

[tex]\omega _{o}[/tex] is the initial angular velocity

[tex]t[/tex] is the final time

[tex]t_{o}[/tex] is the initial time

From the question

[tex]\alpha[/tex] = - 4.46 rad/s²

[tex]\omega _{o}[/tex] = 0 rad/s (starting from rest)

[tex]\omega[/tex] = -31.4 rad/s

[tex]t_{o}[/tex] = 0 s

Now, we will determine t

From [tex]\alpha =\frac{\omega -\omega _{o} }{t - t_{o} }[/tex], then

[tex]-4.46 = \frac{-31.4 - 0}{t - 0}[/tex]

[tex]-4.46 = \frac{-31.4}{t}[/tex]

[tex]t = \frac{-31.4}{-4.46}[/tex]

t = 7.04 secs

This is the time spent in one direction,

Since the angular displacement of the wheel is zero ( it returned to its initial position), then the time required for the change in the angular velocity will be twice this time, that is 2t

Hence,

The time is 2×7.04 secs = 14.08 secs

This is the time for the change in the angular velocity to occur.

Q&A Education