Respuesta :
Answer:
a
[tex]G = 0.007523 [/tex]
b
The number of cars the highway patrol officer would watch before a car that is seen is [tex]E(X) = 1.6027 [/tex]
The standard deviation is [tex]s = 0.9829 [/tex]
gg
Step-by-step explanation:
From the question we are told that
The mean is [tex]\mu = 71.5 \ miles/hour[/tex]
The standard deviation is [tex]\sigma = 4.75 \ miles/hour[/tex]
The speed limit is [tex] x = 70 \ miles /hour[/tex]
Generally the probability of getting a car that is moving with speed greater than the speed limit is mathematically represented as
[tex]p =P(X > x ) = P(X > 70) = P(\frac{X - \mu }{\sigma } > \frac{70 - 71.5 }{4.75})[/tex]
=> [tex] p= P(X > 70) = P(\frac{X - \mu }{\sigma } > \frac{70 - 71.5 }{4.75})[/tex]
=> [tex] p= P(X > 70) = P(\frac{X - \mu }{\sigma } > -0.31579 )[/tex]
Here
[tex]\frac{X - \mu }{\sigma } = Z(The \ standardized \ value \ of X )[/tex]
So
=> [tex] p= P(X > 70) = P(Z > -0.31579 )[/tex]
From the z-table
[tex]p = P(Z > -0.31579 ) = 0.62392[/tex]
So
[tex] p = P(X > 70) = 0.62392 [/tex]
Generally the probability of getting a car that is not moving with speed greater than the speed limit is mathematically represented as
[tex]q = 1 - p[/tex]
=> [tex]q = 1 - 0.62392 [/tex]
=> [tex]q = 0.37608 [/tex]
Generally the probability of getting 5 cars that are not speeding is mathematically represented as
[tex]G = q^5[/tex]
=> [tex]G = (0.37608)^5[/tex]
=> [tex]G = 0.007523 [/tex]
Generally the number of cars that the highway patrol officer is expected to watch until the first car that is speeding is gotten is mathematically represented as
[tex]E(X) = \frac{1}{p}[/tex]
=> [tex]E(X) = \frac{1}{0.62392}[/tex]
=> [tex]E(X) = 1.6027 [/tex]
Generally the standard deviation is mathematically represented as
[tex]s = \sqrt{\frac{1 - p }{ p^2} }[/tex]
=> [tex]s = \sqrt{\frac{1 -0.62392 }{ (0.62392)^2} }[/tex]
=> [tex]s = 0.9829 [/tex]
The probability that 5 cars pass and none are speeding is 0.007523 and the number of cars the highway patrol officer would watch before a car that is seen is E(X) = 1.6027
What is normal a distribution?
It is also called the Gaussian Distribution. It is the most important continuous probability distribution. The curve looks like a bell, so it is also called a bell curve.
The z-score is a numerical measurement used in statistics of the value's relationship to the mean of a group of values, measured in terms of standards from the mean.
The distribution of passenger vehicle speeds traveling on a certain freeway in California is nearly normal with a mean of 71.5 miles/hour and a standard deviation of 4.75 miles/hour.
The speed limit on this stretch of the freeway is 70 miles/hour.
Generally, the probability of getting a car that is moving with speed greater than the speed limit is mathematically represented as;
[tex]p = P(X > x) = P(X > 70) = P(z = \dfrac{X - \mu}{\sigma } > \dfrac{70 - 71.5}{4.75})\\\\p = P(X > 70 ) = P(\dfrac{X -\mu}{\sigma} > -0.31579)[/tex]
From the z-table
[tex]p = P(X > 70)= P(z > -0.31579) \\\\p = 0.62392[/tex]
Generally, the probability of getting a car that is not moving with speed greater than the speed limit will be
q = 1 - p
q = 1 - 0.62392
q = 0.37608
Generally, the probability of getting cars that are not speeding will be
G = q⁵
G = 0.37608⁵
G = 0.007523
The number of cars that the highway patrol officer is expected to watch until the first car that is speeding is gotten will be
[tex]\rm E(X) = \dfrac{1}{p}\\\\E(X) = \dfrac{1}{0.62392}\\\\E(X) = 1.6027[/tex]
The standard deviation will be
[tex]\sigma = \sqrt{\dfrac{1-p}{p}}\\\\\\\sigma = \sqrt{\dfrac{1-0.63292}{0.62392}}\\\\\\\sigma = 0.9829[/tex]
More about the normal distribution link is given below.
https://brainly.com/question/12421652