Respuesta :
Answer:
a. [tex]Mean = 8.25[/tex]
b. [tex]SD = 3.7125[/tex]
c. [tex]SD = 3.15[/tex]
d. [tex]SD = 2.4[/tex]
e. As p approaches 1 , the standard deviation increases (that is, it approaches 0).
Step-by-step explanation:
Solving (a):
[tex]p = 55\%[/tex]
[tex]n = 15[/tex]
Find Mean
Mean is calculated as thus:
[tex]Mean = n * p[/tex]
[tex]Mean = 15 * 55\%[/tex]
Convert percentage to decimal
[tex]Mean = 15 * 0.55[/tex]
[tex]Mean = 8.25[/tex]
Solving (b):
Calculate Standard Deviation (SD)
Standard deviation is calculated as thus:
[tex]SD = n * p * (1 - p)[/tex]
[tex]SD = 15 * 55\% * (1 - 55\%)[/tex]
Convert percentage to decimal
[tex]SD = 15 * 0.55 * (1 - 0.55)[/tex]
[tex]SD = 15 * 0.55 * 0.45[/tex]
[tex]SD = 3.7125[/tex]
Solving (c):
Calculate Standard Deviation if p = 0.7
Using same formula used in (b) above
[tex]SD = n * p * (1 - p)[/tex]
[tex]SD = 15 * 0.7 * (1 - 0.7)[/tex]
[tex]SD = 15 * 0.7 * 0.3[/tex]
[tex]SD = 3.15[/tex]
Solving (d):
Calculate Standard Deviation if p = 0.8
Using same formula used in (b) & (c) above
[tex]SD = n * p * (1 - p)[/tex]
[tex]SD = 15 * 0.8 * (1 - 0.8)[/tex]
[tex]SD = 15 * 0.8 * 0.2[/tex]
[tex]SD = 2.4[/tex]
Solving (e):
What does the working show
In (b)
When p = 0.5
SD = 3.7125
In (c)
When p = 0.7
SD = 3.15
In (d)
When p = 0.8
SD = 2.4
Notice that as the value of p increases, the standard deviation gets closer to 0.