Answer:
The answer is "[tex]\bold{ y^{ \frac{2}{3}}} = \frac{2}{3}x + c} \\\\[/tex]"
Step-by-step explanation:
By using the given method we separate the above-given variable and find the solution of:
[tex]\bold{\frac{dy}{dx} =y^{\frac{1}{3}}}[/tex]
Solution:
[tex]\to \frac{dy}{dx} =y^{\frac{1}{3}}\\\\\to \frac{dy}{y^{\frac{1}{3}}} =dx\\\\\to y^{ - \frac{1}{3}} dy =dx\\\\[/tex]
Integrate the above value:
[tex]\to \int y^{ - \frac{1}{3}} dy = \int 1 dx\\\\\\\to \frac{y^{ - \frac{1}{3} +1}}{- \frac{1}{3} +1} = x \\\\ \\\to \frac{y^{ \frac{-1 +3}{3}}}{ \frac{-1+3}{3} +1} = x \\\\\\\to \frac{y^{ \frac{2}{3}}}{ \frac{2}{3} +1} = x \\\\\\\to \bold{y^{ \frac{2}{3}}} = \frac{2}{3}x + c} \\\\[/tex]