Derive: How?
[tex] \cot(2a) = \frac{ {2cot}^{2}a - 1}{2cota} [/tex]
Please write all steps. [ using compound angle formula]

Respuesta :

Answer:  see proof below

Step-by-step explanation:

Note: The given equation cannot be proven. Instead I will prove:

[tex]\cot(2\alpha)=\dfrac{\cot^2\alpha-1}{2\cot \alpha}[/tex]

Use the Reciprocal Identity:  cot A = (cos A)/(sin A)

Use the following Double Angle Identities:

cos (2A) = cos² A - sin² A

sin (2A) = 2 sin A · cos A

Proof LHS → RHS:

LHS:                        cot (2A)

[tex]\text{Reciprocal:}\qquad \qquad \dfrac{\cos (2\alpha)}{\sin (2\alpha)}[/tex]

[tex]\text{Double Angle:}\qquad \quad \dfrac{\cos^2 \alpha-\sin^2 \alpha}{2\sin \alpha \cdot \cos \alpha}[/tex]

[tex]\text{Manipulate:}\qquad \quad \dfrac{\cos^2 \alpha-\sin^2 \alpha}{2\sin \alpha \cdot \cos \alpha}\bigg(\dfrac{\frac{1}{\sin^2 \alpha}}{\frac{1}{\sin^2 \alpha}}\bigg)[/tex]

                         [tex]=\dfrac{\frac{\cos^2 \alpha}{\sin^2 \alpha}-\frac{\sin^2 \alpha}{\sin^2 \alpha}}{\frac{2\sin \alpa \cdot \cos \alpha}{\sin \alpha \cdot \sin \alpha}}[/tex]

                         [tex]=\dfrac{\cot^2 \alpha-1}{2\cot \alpha}[/tex]

LHS = RHS [tex]\checkmark[/tex]

Ver imagen tramserran
Ver imagen tramserran

Answer:

see proof below

Step-by-step explanation:

cot(2a) = (cot^2a - 1)/2cota

Remember that cotangent is the inverse of tan...

cot = 1/tan => cot(2a) = 1/tan2a

Here I used the formula for tan2a, or in other words tan2a = 2tana/1 - tan^2a

Therefore the inverse of tan2a, 1/tan2a, should be the inverse of 2tanA/1 - tan^2a, or 1 - tan^2a/2tana => 1/tan2a = 1 - tan^2a/2tana = cot(2a)

The reverse is true as well, tan is the inverse of cotangent...tanA = 1/cotA

cot(2a) = 1 - tan^2a/2tana = 1 - (1/cot^2a)/2(1/cota)

= cot^2a - 1/cot^2a * cota/2

= cot^2a - 1/2cota

L.H.S = R.H.S, hence proved

Q&A Education