Respuesta :
Answer:
Explained below.
Step-by-step explanation:
The information provided is:
Mean Standard Deviation
10 drops of water 4 0.61
10 drops of cellulase 3.5 0.50
10 drops of pectinase 12.5 0.71
5 drops of pectinase 10 0.82
+ 5 drops of cellulase
- Calculate the standard error of the mean (SE) and 95% confidence interval for the group "10 drops of water" as follows:
[tex]SE=\frac{s}{\sqrt{n}}=\frac{0.61}{\sqrt{10}}=0.192899\approx 0.1929[/tex]
[tex]CI=\bar x\pm t_{\alpha/2}\times SE\\\\=4\pm 2.262\times 0.1929\\\\=(3.5636602,\ 4.4363398)\\\\\approx (3.56, 4.44)[/tex]
- Calculate the standard error of the mean (SE) and 95% confidence interval for the group "10 drops of cellulase " as follows:
[tex]SE=\frac{s}{\sqrt{n}}=\frac{0.50}{\sqrt{10}}=0.1581139\approx 0.1581[/tex]
[tex]CI=\bar x\pm t_{\alpha/2}\times SE\\\\=3.5\pm 2.262\times 0.1581\\\\=(3.1423778,\ 3.8576222)\\\\\approx (3.14, 3.86)[/tex]
- Calculate the standard error of the mean (SE) and 95% confidence interval for the group "10 drops of pectinase" as follows:
[tex]SE=\frac{s}{\sqrt{n}}=\frac{0.71}{\sqrt{10}}=0.2245217\approx 0.2245[/tex]
[tex]CI=\bar x\pm t_{\alpha/2}\times SE\\\\=12.5\pm 2.262\times 0.2245\\\\=(11.992181,\ 13.007819)\\\\\approx (11.99, 13.01)[/tex]
- Calculate the standard error of the mean (SE) and 95% confidence interval for the group "5 drops of pectinase + 5 drops of cellulase" as follows:
[tex]SE=\frac{s}{\sqrt{n}}=\frac{0.82}{\sqrt{10}}=0.25930677\approx 0.2593[/tex]
[tex]CI=\bar x\pm t_{\alpha/2}\times SE\\\\=10\pm 2.262\times 0.2593\\\\=(9.4134634,\ 10.5865366)\\\\\approx (9.41, 10.59)[/tex]
The critical value of t is computed using the t-table for 95% confidence level and (n - 1) 9 degrees of freedom.