Respuesta :

Step-by-step explanation:

Hey there!

The equation of a st.line passing through points (6,-5) and (3,0) is;

[tex](y - y1) = \frac{y2 - y1}{x2 - x1} (x - x1)[/tex]

[Using double point formula]

Now, Put all values,

[tex](y + 5) = \frac{0 + 5}{3 - 6} (x - 6)[/tex]

Simplify it to get equation.

[tex](y + 5) = - \frac{5}{3} (x - 6)[/tex]

[tex]3(y + 5) = - 5(x - 6)[/tex]

[tex]3y + 15 = - 5x + 30[/tex]

[tex]5x + 3y + 15 - 30 = 0[/tex]

[tex]5x + 3y - 15 = 0[/tex]

Therefore the required equation is 5x + 3y - 15 = 0.

Hope it helps...

Answer:

y = -5/3x + 5

Step-by-step explanation:

The formula for the equation of a line is :

y - y1 = m (x-x1)

m is the gradient

finding the gradient

formula

[tex]\frac{y2-y1}{x2-x1} \\\\[/tex]

= (0--5)/ (3-6)

=5 / -3

gradient = - 5/3

inserting the values in formula for the equation of a line

y - y1 = m (x-x1)

y - -5 = -5/3 (x - 6 )

y + 5 = -5/3 x + 10

y = -5/3x + 10 - 5

y = -5/3x + 5

Q&A Education