Respuesta :
Step-by-step explanation:
Hey there!
The equation of a st.line passing through points (6,-5) and (3,0) is;
[tex](y - y1) = \frac{y2 - y1}{x2 - x1} (x - x1)[/tex]
[Using double point formula]
Now, Put all values,
[tex](y + 5) = \frac{0 + 5}{3 - 6} (x - 6)[/tex]
Simplify it to get equation.
[tex](y + 5) = - \frac{5}{3} (x - 6)[/tex]
[tex]3(y + 5) = - 5(x - 6)[/tex]
[tex]3y + 15 = - 5x + 30[/tex]
[tex]5x + 3y + 15 - 30 = 0[/tex]
[tex]5x + 3y - 15 = 0[/tex]
Therefore the required equation is 5x + 3y - 15 = 0.
Hope it helps...
Answer:
y = -5/3x + 5
Step-by-step explanation:
The formula for the equation of a line is :
y - y1 = m (x-x1)
m is the gradient
finding the gradient
formula
[tex]\frac{y2-y1}{x2-x1} \\\\[/tex]
= (0--5)/ (3-6)
=5 / -3
gradient = - 5/3
inserting the values in formula for the equation of a line
y - y1 = m (x-x1)
y - -5 = -5/3 (x - 6 )
y + 5 = -5/3 x + 10
y = -5/3x + 10 - 5
y = -5/3x + 5