Respuesta :

Answer:

[tex]x<-6\text{ or } x>2[/tex]

Step-by-step explanation:

We have the inequality:

[tex]\frac{2}{5}|5x+10|-14>-6[/tex]

First, we can factor out a 5 from our absolute value. This yields:

[tex]\frac{2}{5}(5|x+2|)-14>-6[/tex]

Simplify:

[tex]2|x+2|-14>-6[/tex]

Add 14 to both sides:

[tex]2|x+2|>8[/tex]

Divide both sides by 2:

[tex]|x+2|>4[/tex]

Definition of Absolute Value:

[tex]x+2>4\text{ or } -(x+2)>4[/tex]

Solve each case individually:

Case 1:

[tex]x+2>4[/tex]

Subtract 2 from both sides:

[tex]x>2[/tex]

Case 2:

[tex]-(x+2)>4[/tex]

Divide both sides by -1. Flip the sign:

[tex]x+2<-4[/tex]

Subtract 2 from both sides:

[tex]x<-6[/tex]

So, our answers are:

[tex]x<-6, x>2[/tex]

Since our inequality is a greater than, we will have an "or" inequality.

So, our answer is all values left to the first solution and all values to the right of the second solution:

[tex]x<-6\text{ or } x>2[/tex]

And we're done!

Q&A Education