Respuesta :

Answer: c = [tex]\frac{24}{5}[/tex]

Step-by-step explanation:

Hey there!

Step 1: Cancel 33 on both sides.

24 - 2c = 2c + c

Step 2: Simplify 2c + c to 3c.

24 - 2c = 3c

Step 3: Add 2c to both sides.

24 = 3c + 2c

Step 4: Simplify 3c + 2c to 5c.

24 = 5c

Step 5: Divide both sides by 5

[tex]\frac{24}{5}[/tex] = c

Step 6: Switch Sides.

c = [tex]\frac{24}5}[/tex]

~I hope I helped you! :)~

Answer: c≓−2.135980077

How to solve it: Step by step solution :

STEP

1

:

           2c + 5

Simplify   ——————

             c  

Equation at the end of step

1

:

      2                           (2c+5)

 (c-((—•(c2))•(2c-5)))-(((3•(c3))•——————)+2)  = 0

      6                             c  

STEP

2

:

Equation at the end of step

2

:

      2                      (2c+5)

 (c-((—•(c2))•(2c-5)))-((3c3•——————)+2)  = 0

      6                        c  

STEP

3

:

Dividing exponential expressions

3.1    c3 divided by c1 = c(3 - 1) = c2

Equation at the end of step

3

:

      2

 (c-((—•(c2))•(2c-5)))-(3c2•(2c+5)+2)  = 0

      6

STEP

4

:

           1

Simplify   —

           3

Equation at the end of step

4

:

         1                        

 (c -  ((— • c2) • (2c - 5))) -  (6c3 + 15c2 + 2)  = 0

         3                        

STEP

5

:

Equation at the end of step 5

        c2                

 (c -  (—— • (2c - 5))) -  (6c3 + 15c2 + 2)  = 0

        3                  

STEP

6

:

Equation at the end of step 6

       c2 • (2c - 5)    

 (c -  —————————————) -  (6c3 + 15c2 + 2)  = 0

             3          

STEP

7

:

Rewriting the whole as an Equivalent Fraction

7.1   Subtracting a fraction from a whole

Rewrite the whole as a fraction using  3  as the denominator :

         c     c • 3

    c =  —  =  —————

         1       3  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

7.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

c • 3 - (c2 • (2c-5))     -2c3 + 5c2 + 3c

—————————————————————  =  ———————————————

          3                      3      

Equation at the end of step

7

:

 (-2c3 + 5c2 + 3c)    

 ————————————————— -  (6c3 + 15c2 + 2)  = 0

         3            

STEP

8

:

Rewriting the whole as an Equivalent Fraction

8.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  3  as the denominator :

                     6c3 + 15c2 + 2     (6c3 + 15c2 + 2) • 3

   6c3 + 15c2 + 2 =  ——————————————  =  ————————————————————

                           1                     3          

STEP

9

:

Pulling out like terms

9.1     Pull out like factors :

  -2c3 + 5c2 + 3c  =   -c • (2c2 - 5c - 3)

Trying to factor by splitting the middle term

9.2     Factoring  2c2 - 5c - 3

The first term is,  2c2  its coefficient is  2 .

The middle term is,  -5c  its coefficient is  -5 .

The last term, "the constant", is  -3 Adding up the two equivalent fractions

-c • (c-3) • (2c+1) - ((6c3+15c2+2) • 3)     -20c3 - 40c2 + 3c - 6

————————————————————————————————————————  =  —————————————————————

                   3                                   3          

STEP

10

:

Pulling out like terms

10.1     Pull out like factors :

  -20c3 - 40c2 + 3c - 6  =

 -1 • (20c3 + 40c2 - 3c + 6)

Checking for a perfect cube :

10.2    20c3 + 40c2 - 3c + 6  is not a perfect cube

Solving    2c2-5c-3 = 0 by the Quadratic Formula .

According to the Quadratic Formula,  c  , the solution for   Ac2+Bc+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :

                                   

           - B  ±  √ B2-4AC

 c =   ————————

                     2A

 In our case,  A   =     2

                     B   =    -5

                     C   =   -3

Accordingly,  B2  -  4AC   =

                    25 - (-24) =

                    49

Applying the quadratic formula :

              5 ± √ 49

  c  =    —————

                   4

Can  √ 49 be simplified ?

Yes!   The prime factorization of  49   is

  7•7

To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a square i.e. second root).

√ 49   =  √ 7•7   =

               ±  7 • √ 1   =

               ±  7

So now we are looking at:

          c  =  ( 5 ± 7) / 4

Two real solutions:

c =(5+√49)/4=(5+7)/4= 3.000

or:

c =(5-√49)/4=(5-7)/4= -0.500

One solution was found :

      c ≓ -2.135980077

Q&A Education