Show all work to multiply quantity 2 plus the square root of negative 25 end quantity times quantity 4 minus the square root of negative 100 end quantity

Respuesta :

Answer:

So, this is just

[tex](2+\sqrt{-25}) \cdot (4 - \sqrt{-100})[/tex]

This is

(2 + 5i)(4 - 10i), which is 58 :)

Using complex numbers, the result of the expression is given by: 58

----------------------

The basic complex number expression is given by:

[tex]i^2 = -1[/tex], and thus: [tex]\sqrt{-1} = i[/tex]

----------------------

The expression is given by:

[tex](2 + \sqrt{-25})\times (4 - \sqrt{-100})[/tex]

----------------------

The complex roots are:

[tex]\sqrt{-25} = \sqrt{-1 \times 25} = \sqrt{25}\sqrt{-1} = 5i[/tex]

[tex]\sqrt{-100} = \sqrt{-1 \times 100} = \sqrt{100}\sqrt{-1} = 10i[/tex]

----------------------

Replacing into the expression:

[tex](2 + \sqrt{-25})\times (4 - \sqrt{-100}) = (2 + 5i)(4 - 10i)[/tex]

Applying the distributive property:

[tex](2 + 5i)(4 - 10i) = 8 - 20i + 20i - 50i^2 = 8 - 50(-1) = 8 + 50 = 58[/tex]

The result of the expression is 58.

A similar problem is given at https://brainly.com/question/13201088

Q&A Education