Use trigonometric ratios to solve each right triangle. Find the length os AC
Step-by-step explanation:
Hey there!
Given;
The measure of angle B is 45°.
And AB = 14.
Taking refrence angle as B, we get;
AC = perpendicular
AB = hypotenuse
Using ratio of sin,
[tex] \sin(45°) = \frac{p}{h} [/tex]
Put all values.
[tex] \sin(45°) = \frac{ac}{14} [/tex]
Simplify it to get answer.
[tex] \frac{1}{ \sqrt{2} } = \frac{AC}{14} [/tex]
[tex] \sqrt{2} AC = 14[/tex]
[tex]AC = \frac{14}{ \sqrt{2} } [/tex]
[tex]AC= \frac{14 \times \sqrt{2} }{ \sqrt{2} \times \sqrt{2} } [/tex]
[tex]AC = \frac{14 \sqrt{2} }{2} [/tex]
[tex]AC = 7\sqrt{2} [/tex]
Therefore the answer is option B.
Hope it helps...