a = √7 + √c and b = √63 + √d where c and d are positive integers.
Given that c: d = 1: 9
find, in its simplest form, the ratio a: b

Respuesta :

Answer:

[tex]\displaystyle a:b=\frac{1}{3}[/tex]

Step-by-step explanation:

Ratios

We are given the following relations:

[tex]a=\sqrt{7}+\sqrt{c}\qquad \qquad[1][/tex]

[tex]b=\sqrt{63}+\sqrt{d}\qquad \qquad[2][/tex]

[tex]\displaystyle \frac{c}{d}=\frac{1}{9} \qquad \qquad [3][/tex]

From [3]:

[tex]9c=d[/tex]

Replacing into [2]:

[tex]b=\sqrt{63}+\sqrt{9c}[/tex]

We can express 63=9*7:

[tex]b=\sqrt{9*7}+\sqrt{9c}[/tex]

Taking the square root of 9:

[tex]b=3\sqrt{7}+3\sqrt{c}[/tex]

Factoring:

[tex]b=3(\sqrt{7}+\sqrt{c})[/tex]

Find the ration a:b:

[tex]\displaystyle a:b=\frac{\sqrt{7}+\sqrt{c}}{3(\sqrt{7}+\sqrt{c})}[/tex]

Simplifying:

[tex]\boxed{a:b=\frac{1}{3}}[/tex]

Otras preguntas

Q&A Education