Respuesta :

Answer:

x = [tex]\frac{7}{2}[/tex] ± [tex]\frac{\sqrt{13} }{2}[/tex]

Step-by-step explanation:

Given

x² - 7x + 9 = 0 ( subtract 9 from both sides )

x² - 7x = - 9

Solve using the method of completing the square

add ( half the coefficient of the x- term)² to both sides

x² + 2( - [tex]\frac{7}{2}[/tex] )x + [tex]\frac{49}{4}[/tex] = - 9 +

(x - [tex]\frac{7}{2}[/tex] )² = [tex]\frac{13}{4}[/tex] ( take the square root of both sides )

x - [tex]\frac{7}{2}[/tex] = ± [tex]\sqrt{\frac{13}{4} }[/tex] = ± [tex]\frac{\sqrt{13} }{2}[/tex] ( add

x = [tex]\frac{7}{2}[/tex] ± [tex]\frac{\sqrt{13} }{2}[/tex] = [tex]\frac{7+/-\sqrt{13} }{2}[/tex]

Answer:

Using quadratic formula again :)

Ver imagen Aash5018
Q&A Education