Respuesta :

Answer:

(c) -4+i is conjugate of complex number i^3 – 4 is

Step-by-step explanation:

-4+i^3

=-4+(i^2)i

=-4+(-1)i

=-4-i

Conjugate of x+iy= x-iy

So, conjugate of -4-i= -4+i

Hope it helps :-)

The conjugate of a complex number is a complex number with the same real part, but a negated imaginary part. The conjugate of [tex]i^3 - 4[/tex] is [tex]-4 + i[/tex]

Let the complex number be N. So:

[tex]N = i^3 - 4[/tex]

In complex numbers,

[tex]i = \sqrt{-1}[/tex]

Take cube of both sides

[tex]i^3 = (\sqrt{-1})^3[/tex]

Split

[tex]i^3 = (\sqrt{-1}) \times (\sqrt{-1}) \times (\sqrt{-1})[/tex]

[tex]i^3 = -1 \times (\sqrt{-1})[/tex]

Substitute [tex]i = \sqrt{-1}[/tex]

[tex]i^3 = -1 \times i[/tex]

[tex]i^3 = -i[/tex]

So, we have:

[tex]N = i^3 - 4[/tex]

[tex]N = -i - 4[/tex]

Rewrite as:

[tex]N = -4 - i[/tex]

A complex number a + bi has a- bi as its conjugate.

So, the conjugate of N is:

[tex]N' = -4 + i[/tex]

Hence, (c) is correct

Read more about conjugates at:

https://brainly.com/question/4938966

Q&A Education