Respuesta :

Answer:

see below

Step-by-step explanation:

s = r theta   where r is the radius  and theta is  the central angle in radians

theta = 80 * pi/180 =  4 pi/9

PQ = 10 * 4 pi/9

      = 40 pi/9 ft

     

To find the area of the sector, first find the area of the circle

A = pi r^2

  = pi ( 10)^2

  = 100 pi

The sector is 80/360 = 2/9 so the sector is 2/9 of the circle

Multiply the area by the fraction of the circle that the sector is

100 pi* 2/9 = 200 pi /9  ft^2

Answer:

[tex]\huge \boxed{\mathrm{a. \ 13.96 \ ft}} \\ \\ \\ \huge \boxed{\mathrm{b. \ 69.81 \ ft^2 }}[/tex]

[tex]\rule[225]{225}{2}[/tex]

Step-by-step explanation:

Arc length = θ/360 × 2πr

80/360 × 2π(10)

40/9π ≈ 13.96

Area of sector = θ/360 × πr²

80/360 × π(10)²

200/9π ≈ 69.81

[tex]\rule[225]{225}{2}[/tex]

Q&A Education