Respuesta :

Answer:

[tex]$\frac{p^2 - 16} {4p^2 + 16} $[/tex]

Step-by-step explanation:

I will work with radians.

[tex]$\frac {\cos^2 \left(\frac{\pi}{2}-x \right)+\sin(-x)-\sin^2 \left(\frac{\pi}{2}-x \right)+\cos \left(\frac{\pi}{2}-x \right)} {[\sin(\pi -x)+\cos(-x)] \cdot [\sin(2\pi +x)\cos(2\pi-x)]}$[/tex]

First, I will deal with the numerator

[tex]$\cos^2 \left(\frac{\pi}{2}-x \right)+\sin(-x)-\sin^2 \left(\frac{\pi}{2}-x \right)+\cos \left(\frac{\pi}{2}-x \right)$[/tex]

Consider the following trigonometric identities:

[tex]$\boxed{\cos\left(\frac{\pi}{2}-x \right)=\sin(x)}$[/tex]

[tex]$\boxed{\sin\left(\frac{\pi}{2}-x \right)=\cos(x)}$[/tex]

[tex]\boxed{\sin(-x)=-\sin(x)}[/tex]

[tex]\boxed{\cos(-x)=\cos(x)}[/tex]

Therefore, the numerator will be

[tex]$\sin^2(x)-\sin(x)-\cos^2(x)+\sin(x) \implies \sin^2(x)- \cos^2(x)$[/tex]

Once

[tex]\sin(x)=p[/tex]

[tex]\cos(x)=4[/tex]

[tex]$\sin^2(x)-\cos^2(x) \implies p^2-4^2 \implies \boxed{p^2-16}$[/tex]

Now let's deal with the numerator

[tex][\sin(\pi -x)+\cos(-x)] \cdot [\sin(2\pi +x)\cos(2\pi-x)][/tex]

Using the sum and difference identities:

[tex]\boxed{\sin(a \pm b)=\sin(a) \cos(b) \pm \cos(a)\sin(b)}[/tex]

[tex]\boxed{\cos(a \pm b)=\cos(a) \cos(b) \mp \sin(a)\sin(b)}[/tex]

[tex]\sin(\pi -x) = \sin(x)[/tex]

[tex]\sin(2\pi +x)=\sin(x)[/tex]

[tex]\cos(2\pi-x)=\cos(x)[/tex]

Therefore,

[tex][\sin(\pi -x)+\cos(-x)] \cdot [\sin(2\pi +x)\cos(2\pi-x)] \implies [\sin(x)+\cos(x)] \cdot [\sin(x)\cos(x)][/tex]

[tex]\implies [p+4] \cdot [p \cdot 4]=4p^2+16p[/tex]

The final expression will be

[tex]$\frac{p^2 - 16} {4p^2 + 16} $[/tex]

Q&A Education