contestada

A rectangular photograph measures 23.3 cm by 19.7 cm, each correct to 1 decimal place
Calculate the lower bound for
(a) the perimeter,
(b) the area

Respuesta :

Perimeter of the given rectangle is equals to [tex]86cm[/tex]. Area of the rectangle is equals to [tex]459 cm^{2}[/tex](lower bound).

What is rectangle?

" Rectangle is defined as the parallelogram whose opposite sides are congruent to each other and each angle measures 90°."

Formula used

Area of a rectangle = Length × width

Perimeter of a rectangle = 2 ( length + width)

According to question,

Given,

Length of the rectangle = 23.3cm

Width of the rectangle = 19.7cm

Substitute the value in the formula we get,

Perimeter of the rectangle [tex]= 2 ( 23.3 + 19.7)[/tex]

                                            [tex]= 2 ( 43)\\\\\= 86cm[/tex]

Area of the rectangle = 23.3 × 19.7

                                     [tex]= 459.01cm^{2}[/tex]

                                    = [tex]459cm^{2}[/tex](lower bound)

Hence, perimeter and area of the given rectangle is equals to [tex]86cm[/tex] and [tex]459cm^{2}[/tex].

Learn more about rectangle here

https://brainly.com/question/15019502

#SPJ2

Q&A Education