Respuesta :

Answer:

70.6°

Step-by-step explanation:

The angle between the 2 lines can be calculated using

tanΘ = | [tex]\frac{m_{2}-m_{1} }{1+m_{1}m_{2} }[/tex] | ( Θ is the angle between the lines )

The equation of a line in slope- intercept form is

y = mx + c ( m is the slope and c the y- intercept )

Rearrange the 2 equations into this form to extract the slopes

3x - 4y + 5 = 0 ( subtract 3x + 5 from both sides )

- 4y = - 3x - 5 ( divide all terms by - 4 )

y = [tex]\frac{3}{4}[/tex] x + [tex]\frac{5}{4}[/tex] with m = [tex]\frac{3}{4}[/tex] ← [tex]m_{2}[/tex]

--------------------------------------------

2x + 3y - 1 = 0 ( subtract 2x - 1 from both sides )

3y = - 2x + 1 ( divide all terms by 3 )

y = - [tex]\frac{2}{3}[/tex] x + [tex]\frac{1}{3}[/tex] with m = - [tex]\frac{2}{3}[/tex] ← [tex]m_{1}[/tex]

Note it does not matter which slope is labelled [tex]m_{1}[/tex] or [tex]m_{2}[/tex]

Thus

tan Θ = | [tex]\frac{\frac{3}{4}+\frac{2}{3} }{1+(-\frac{2}{3})\frac{3}{4} }[/tex]

          = | [tex]\frac{\frac{17}{12} }{\frac{1}{2} }[/tex] = | [tex]\frac{17}{6}[/tex] | = [tex]\frac{17}{6}[/tex] , then

Θ = [tex]tan^{-1}[/tex] ([tex]\frac{17}{6}[/tex] ) ≈ 70.6° ( to 1 dec. place )

Q&A Education