Respuesta :
Answer:
[tex] \boxed{ \bold{ \huge{ \boxed{ \sf{ \sqrt{41} \: \: units}}}}}[/tex]
Step-by-step explanation:
Let M ( -1 , 1 ) be ( x₁ , y₁ ) and U ( 4 , 5 ) be ( x₂ , y₂ )
Finding the distance from M to U
[tex] \boxed{ \sf{distance = \sqrt{ {(x2 - x1)}^{2} + {(y2 - y1)}^{2} } }}[/tex]
[tex] \longrightarrow{ \sf{ \sqrt{ {(4 - ( - 1))}^{2} + {(5 - 1)}^{2} } }}[/tex]
[tex] \longrightarrow{ \sf{ \sqrt{ {(4 + 1)}^{2} + {(5 - 1)}^{2} } }}[/tex]
[tex] \longrightarrow{ \sf{ \sqrt{ {(5)}^{2} + {(4)}^{2} } }}[/tex]
[tex] \longrightarrow{ \sf{ \sqrt{25 + 16}}} [/tex]
[tex] \longrightarrow{ \sf{ \sqrt{41} }}[/tex] units
The distance from M to U is [tex] \sf{ \sqrt{41} \: \: units}[/tex]
Hope I helped!
Best regards! :D
Answer:
The answer is
[tex]\sqrt{41} \: \: or \: \: 6.403 \: \: \: units[/tex]
Step-by-step explanation:
The distance between two points can be found by using the formula
[tex]d = \sqrt{ ({x1 - x2})^{2} + ({y1 - y2})^{2} } \\ [/tex]
where
(x1 , y1) and (x2 , y2) are the points
From the question the points are
M(-1, 1) and U(4, 5)
The distance from M to U is
[tex] |MU| = \sqrt{ ({ - 1 - 4})^{2} + ( {1 - 5})^{2} } \\ = \sqrt{ ({ - 5})^{2} + ( { - 4})^{2} } \\ = \sqrt{25 + 16} [/tex]
We have the final answer as
[tex] \sqrt{41} \: \: or \: \: 6.403 \: \: \: units[/tex]
Hope this helps you