Two functions f and g are defined on the set R of real numbers by f(x) = 2x - 1 and g(x) =x² + 1. Find the value of [tex]f^{-1}[/tex]og (3)

Respuesta :

Answer:

[tex]\frac{11}{2}[/tex]

Step-by-step explanation:

To obtain the inverse of f(x)

let y = f(x) and rearrange making x the subject, that is

y = 2x - 1 ( add 1 to both sides )

y + 1 = 2x ( divide both sides by 2 )

[tex]\frac{y+1}{2}[/tex] = x

Change y back into terms of x with x = [tex]f^{-1}[/tex](x) , thus

[tex]f^{-1}[/tex](x) = [tex]\frac{x+1}{2}[/tex]

Evaluate g(3) and substitute the value obtained into [tex]f^{-1}[/tex](x)

g(3) = 3² + 1 = 9 + 1 = 10, then

[tex]f^{-1}[/tex] (10) = [tex]\frac{10+1}{2}[/tex] = [tex]\frac{11}{2}[/tex]

Q&A Education