Respuesta :
Answer:
p = 0, p = 12
Step-by-step explanation:
Given a quadratic equation in standard form
ax² + bx + c = 0 then the nature of its roots is given by the discriminant
Δ = b² - 4ac
For equal roots b² - 4ac = 0
Given
x² -(p - 2)x + 2p + 1 = 0 ← in standard form
with a = 1, b = - (p - 2), c = 2p + 1, then
[- (p - 2)]² - (4 × 1 × 2p + 1) = 0
(p - 2)² - 4(2p + 1) = 0
p² - 4p + 4 - 8p - 4 = 0
p² - 12p = 0 ← factor out p from each term
p(p - 12) = 0
Equate each factor to zero and solve for x
p = 0
p - 12 = 0 ⇒ p = 12
Answer:
[tex]\huge\boxed{\sf p = 0 \ \ \ \ OR \ \ \ \ p = 12}[/tex]
Step-by-step explanation:
Given the equation:
[tex]\sf x^2 - (p-2)x+2p+1= 0[/tex].
Comparing it with [tex]\sf ax^2 + bx+c = 0[/tex], we get:
[tex]\sf a = 1 , b = -(p-2), \ c = 2p+1[/tex]
Equal Roots mean Discriminant = 0
So,
[tex]\sf b^2 -4ac = 0\\\\Given\ that\ a = 1 , b = -(p-2) \ and \ c = 2p+1 \\\\\ [-(p-2)\ ]^2 - 4(1)(2p+1) = 0\\\\(p-2)^2 -4(2p+1)=0\\\\p^2 - 4p+4 -8p-4 = 0 \\\\p^2 -12p = 0\\\\Taking \ p \ common\\\\p(p-12) = 0 \\\\Either, \\\\p = 0 \ \ \ \ \bold{OR} \ \ \ \ p-12 = 0\\\\p = 0 \ \ \ \ \bold{OR} \ \ \ \ p = 12[/tex]