Respuesta :

Answer:

[tex]\frac{1}{(x+1)^2}[/tex]

Step-by-step explanation:

Differentiate using the Quotient rule.

Given

y = [tex]\frac{f(x)}{g(x)}[/tex] , then

[tex]\frac{dy}{dx}[/tex] = [tex]\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}[/tex]

Here

y = [tex]\frac{x}{x+1}[/tex] , with

f(x) = x ⇒ f'(x) = 1

g(x) = x + 1 ⇒ g'(x) = 1

Thus

[tex]\frac{dy}{dx}[/tex] = [tex]\frac{(x+1).1-x.1}{(x+1)^2}[/tex]

    = [tex]\frac{x+1-x}{(x+1)^2}[/tex]

    = [tex]\frac{1}{(x+1)^2}[/tex]

Q&A Education