Answer:
[tex] \boxed{\sf Volume \ of \ cube \ (V) = \frac{1}{125} \ in^3} [/tex]
Given:
Side length of the cube (a) = [tex] \sf \frac{1}{5} [/tex] in
To Find:
Volume of the cube (V)
Explanation:
Volume of cube = (side length)³
[tex] \boxed{ \bold{V = a^3}}[/tex]
Substituting value of a in the formula:
[tex] \sf \implies V = {( \frac{1}{5} )}^{3} \\ \\ \sf \implies V = \frac{ {1}^{3} }{ {5}^{3} } \\ \\ \sf \implies V = \frac{1}{ {5}^{3} } \\ \\ \sf \implies V = \frac{1}{125} \: {in}^{3} [/tex]