Respuesta :
Answer:
[tex]\overrightarrow {AB} = (4,5,6)[/tex]
1. 〈x,y,z〉=〈−1,−7,3〉+t〈−4,−5,−6〉 F
2. 〈x,y,z〉=〈−1,−7,3〉+t〈3,−2,9〉 F
3. 〈x,y,z〉=〈−1,−7,3〉+t〈4,5,6〉 T
4. 〈x,y,z〉=〈3,−2,9〉+t〈−1,−7,3〉 F
5. 〈x,y,z〉=〈3,−2,9〉+t〈4,5,6〉 F
Step-by-step explanation:
The vector AB is the vectorial difference between point A and B, that is:
[tex]\overrightarrow {AB} = \vec B - \vec A[/tex]
Given that [tex]\vec A = (-1,-7,3)[/tex] and [tex]\vec B = (3,-2,9)[/tex], the vector AB is:
[tex]\overrightarrow {AB} = (3,-2,9)-(-1,-7,3)[/tex]
[tex]\overrightarrow{AB} = (3-(-1),-2-(-7),9-3)[/tex]
[tex]\overrightarrow {AB} = (4,5,6)[/tex]
The vectorial equation of the line is represented by:
[tex]\langle x, y, z\rangle = \vec A + t \cdot \overrightarrow {AB}[/tex]
Where [tex]t[/tex] is the parametric variable, dimensionless. Given that [tex]\vec A = (-1,-7,3)[/tex] and [tex]\overrightarrow {AB} = (4,5,6)[/tex]
[tex]\langle x,y,z \rangle = \langle -1,-7,3 \rangle + t\cdot \langle 4,5,6 \rangle[/tex]
Finally, the list of questions are now checked:
1. 〈x,y,z〉=〈−1,−7,3〉+t〈−4,−5,−6〉 F
2. 〈x,y,z〉=〈−1,−7,3〉+t〈3,−2,9〉 F
3. 〈x,y,z〉=〈−1,−7,3〉+t〈4,5,6〉 T
4. 〈x,y,z〉=〈3,−2,9〉+t〈−1,−7,3〉 F
5. 〈x,y,z〉=〈3,−2,9〉+t〈4,5,6〉 F