Respuesta :

Answer:

1. In the multiplication of the imaginary parts, the student forgot to square of i. OR

2. The student has only multiplied the real parts and the imaginary parts.

Correct value [tex]=22+7i[/tex].

Step-by-step explanation:

The given expression is

[tex](4+5i)(3-2i)[/tex]

A student multiplies (4+5i) (3-2i) incorrectly and obtains 12-10i.

Student's mistake can be either 1 or second:

1. In the multiplication of the imaginary parts, the student forgot to square of i.

2. The student has only multiplied the real parts and the imaginary parts.

[tex](4+5i)(3-2i)=4\times 3+5\times (-2)i=12-10i[/tex]

Which is not correct. The correct steps are shown below.

Using distributive property, we get

[tex]4(3-2i)+5i(3-2i)[/tex]

[tex]4(3)+4(-2i)+5i(3)+5i(-2i)[/tex]

[tex]12-8i+15i-10i^2[/tex]

[tex]12+7i-10(-1)[/tex]       [tex][\because i^2=-1][/tex]

[tex]12+7i+10[/tex]

[tex]22+7i[/tex]

Therefore, the correct value of [tex](4+5i)(3-2i)[/tex] is [tex]22+7i[/tex].

Q&A Education