a. Find the first and second derivative of the following function in terms of the parameters c1 and c2.

y = c1x + c2x4 y′

b. Find a linear second-order differential equation F(x, y, y′, y″) = 0 for which y = c1x + c2x4 is a two-parameter family of solutions. Make sure that your equation is free of the arbitrary parameters c1 and c2. (Use yp for y′ and ypp for y″.)

Respuesta :

Answer:

Linear second-order differential equation F(x, y, y′, y″) = 0

y¹¹( -3 x⁴ )+ y¹12 x³ - 12 x² y= 0  

Step-by-step explanation:

Step(i):-

Given differential equation

y = c₁x + c₂x⁴  ...(i)

Differentiating equation (i) with respective to 'x', we get

y¹ = c₁(1) +  c₂ ( 4 x³ ) ...(ii)

Differentiating equation (ii) with respective to 'x', we get

y¹¹ =   c₂ ( 12 x² )

[tex]C_{2} = \frac{y^{11} }{12 x^{2} }[/tex] ...(a)

Step(ii):-

Substitute (a) in equation (ii)

[tex]y^{l} = C_{1} + (\frac{y^{ll} }{12x^{2} } ) (4 x^{3} )[/tex]

[tex]C_{1} = y^{l} - (\frac{y^{ll} }{12 x^{2} } ) (4 x^{3} )[/tex] ...(b)

[tex]C_{2} = \frac{y^{11} }{12 x^{2} }[/tex]

Step(iii):-

[tex]y = (y^{l} - (\frac{y^{ll} }{12 x^{2} } ) (4 x^{3} ) x + \frac{y^{ll} }{12 x^{2} } x^{4}[/tex]

12 x² y = (y¹12 x³ - 4 x⁴ y¹¹) + x⁴ y¹¹

x⁴ y¹¹ - 4 x⁴ y¹¹ + y¹12 x³ - 12 x² y= 0

y¹¹( -3 x⁴ )+ y¹12 x³ - 12 x² y= 0

Q&A Education