The curve given by x = sin(t) and y = sin(t + sin(t)) has two tangent lines at the point (x,y) = (0,0). List both of them in order of increasing slope. Your answers should be in the form of y = f(x) without t's.



Line with smaller slope: y(x):



Line with larger slope: y(x):

Respuesta :

Answer:

slope of the tangent

 [tex]\frac{d y}{d x} = \frac{cos(x+sin^{-1}(x) (1+\sqrt{1-x^{2}) } }{\sqrt{1-x^{2} } }[/tex]

The function y = f(x)

 y(x) = 2 x + C

Step-by-step explanation:

Step(i):-

Given x= sin t ...(i)

Differentiating equation (i) with respective to 'x' , we get

[tex]\frac{d x}{d t} = cost[/tex]

Given  y = sin ( t + sin (t)) ...(ii)

Differentiating equation (ii) with respective to 'x' , we get

[tex]\frac{d y}{d t} = cos (t + sin t ) (1 + cos t)[/tex]

Step(ii):-

  [tex]\frac{dy}{dx} = \frac{\frac{dy}{dt} }{\frac{dx}{dt} }[/tex]

 [tex]\frac{d y}{d x} = \frac{cos(t+sin t) (1+cost)}{cost}[/tex]

we know that

 x = sin t  

 t = sin⁻¹ (x)

 cost = √1 - sin²(t) = (√1-x²)

  [tex]\frac{d y}{d x} = \frac{cos(x+sin^{-1}(x) (1+\sqrt{1-x^{2}) } }{\sqrt{1-x^{2} } }[/tex]

 [tex]\frac{d y}{d x} = \frac{cos(x+sin^{-1}(x) (1+\sqrt{1-x^{2}) } }{\sqrt{1-x^{2} } }[/tex]

Put x =0 and y=0

      [tex]\frac{d y}{d x} = 2[/tex]

    d y = 2 d x

Integrating with respective to 'x' , we get

    y(x) = 2 x + C

   

Q&A Education