Respuesta :

Answer:

The solution is [tex]y(t) = \frac{4}{3} - \frac{1}{3} e^{_{-3} t}\\[/tex]

Step-by-step explanation:

The question is:

Solve the initial value problem

y′′+3y'=0

y(0)=1

y′(0)=1

Step-by-step explanation:

First, we will write the characteristic equation, which is

[tex]x^{2} + 3x = 0[/tex]

Then, we will solve for [tex]x[/tex]

[tex]x^{2} + 3x = 0[/tex] becomes

[tex]x(x+3) = 0\\[/tex]

∴ [tex]x = 0[/tex] or [tex]x +3 = 0[/tex]

[tex]x = 0[/tex] or [tex]x = -3[/tex]

Hence, [tex]x_{1} = 0, x_{2} = -3[/tex]

Since the two roots are distinct, that is, [tex]x_{1} \neq x_{2}[/tex]

The general solution is

[tex]y(t) = C_{1}e^{x_{1} t} + C_{2}e^{x_{2} t}\\[/tex]

Then,

[tex]y(t) = C_{1}e^{0 t} + C_{2}e^{-3 t}[/tex]

[tex]y(t) = C_{1} + C_{2}e^{-3 t}\\[/tex]

Then, for [tex]y'(t)[/tex]

[tex]y'(t) = -3C_{2}e^{-3 t}\\[/tex]

Now, from the question

y(0)=1

y′(0)=1

Then,

[tex]1 = y(0) = C_{1} + C_{2}e^{-3 (0)}\\[/tex]

Then,

[tex]1 = C_{1} + C_{2}[/tex] ........ (1)

Also,

[tex]1 = y'(0) = -3C_{2}e^{-3 (0)}\\[/tex]

Then,

[tex]1 = -3C_{2}e^{-3 (0)}\\[/tex]

[tex]1 = -3C_{2}\\[/tex] ....... (2)

∴ [tex]C_{2} = - \frac{1}{3}[/tex]

From equation (1)

[tex]1 = C_{1} + C_{2}[/tex]

Then,

[tex]C_{1} = 1 - C_{2}[/tex]

[tex]C_{1} = 1 - -\frac{1}{3} \\C_{1} = 1 +\frac{1}{3} \\C_{1} = \frac{4}{3}[/tex]

Hence, [tex]C_{1} = \frac{4}{3}[/tex] and [tex]C_{2} = - \frac{1}{3}[/tex]

Then, the solution becomes

[tex]y(t) = \frac{4}{3} - \frac{1}{3} e^{_{-3} t}\\[/tex]

Q&A Education