Because of their connection with secant lines, tangentlines, and instantaneous rates, limits of the form

lim f(x + h) - f(x)h occur frequently in calculus. Evaluatet his limit for the given value of x and function f.
h→0

f(x)= 3√ x +5, x= 16

a. Does not exist
b. 24
c. 3/8
d.6

Respuesta :

Answer:

C. 3/8

Step-by-step explanation:

Let [tex]f'[/tex] be defined as:

[tex]f'= \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}[/tex]

Where:

[tex]f(x) = 3\cdot \sqrt{x}+5[/tex] and [tex]f(x+h) =3\cdot \sqrt{x+h}+5[/tex]

The definition is now expanded:

[tex]f' = \lim_{h \to 0} \frac{3\cdot \sqrt{x+h}-3\cdot \sqrt{x}}{h}[/tex]

By rationalization:

[tex]f' = 3\cdot \lim_{h \to 0} \frac{( \sqrt{x+h}-\sqrt{x})\cdot (\sqrt{x+h}+\sqrt{x})}{h\cdot (\sqrt{x+h}+\sqrt{x})}[/tex]

[tex]f' = 3\cdot \lim_{h \to 0} \frac{h}{h\cdot (\sqrt{x+h}+\sqrt{x})}[/tex]

[tex]f' = 3\cdot \lim_{h \to 0} \frac{1}{\sqrt{x+h}+\sqrt{x}}[/tex]

[tex]f' = 3\cdot \lim_{h \to 0} \frac{1}{(x+h)^{1/2}+x^{1/2}}[/tex]

If [tex]h = 0[/tex], then:

[tex]f' = \frac{3}{2\cdot x^{1/2}}[/tex]

[tex]f' = \frac{3}{2\cdot \sqrt{x}}[/tex]

Let evaluate [tex]f'[/tex]when [tex]x = 16[/tex]:

[tex]f'(16) = \frac{3}{2\cdot \sqrt{16}}[/tex]

[tex]f'(16) = \frac{3}{8}[/tex]

Which corresponds to option C.

Q&A Education