Answer:
10.09 units
Explanation:
For the A
Ax = -8.0 units
Ay = 6.0 units
The resultant vector = Ra = [tex]\sqrt{A^2_{x} + A^2_{y} }[/tex]
Ra = [tex]\sqrt{(-8)^2 + 6^2 }[/tex] = 10 units
For B
Bx = 1.0 units
By = -1.0 units
The resultant vector = Rb = [tex]\sqrt{B^2_{x} + B^2_{y} }[/tex]
Rb = [tex]\sqrt{1^2 + (-1)^2 }[/tex] = [tex]\sqrt{2}[/tex] units
Adding these two vectors A and B together, magnitude of vector R is
R = [tex]\sqrt{R^2_{a} + R^2_{b} }[/tex]
R = [tex]\sqrt{10^2 + (\sqrt{2} ) ^2}[/tex] = 10.09 units