Respuesta :

Answer:

m∠ABD = 96

Step-by-step explanation:

Given

m∠ABC = 5/2x + 18

m∠CBD = 4x

Required

Determine m∠ABD

From the given parameters, we understand that:

∠ABC ≅ ∠CBD

This implies that:

[tex]\frac{5}{2}x + 18 = 4x[/tex]

Collect Like Terms

[tex]\frac{5}{2}x - 4x =- 18[/tex]

Take LCM

[tex]\frac{5x - 8x}{2} = -18[/tex]

[tex]\frac{-3x}{2} = -18[/tex]

Cross Multiply

[tex]-3x = -18 * 2[/tex]

[tex]-3x = -36[/tex]

Divide through by -3

[tex]x = 12[/tex]

m∠ABD can be calculated using:

m∠ABD = m∠ABC + m∠CBD

[tex]ABD = \frac{5}{2}x + 18 + 4x[/tex]

Substitute 12 for x

[tex]ABD = \frac{5}{2} * 12 + 18 + 4 * 12[/tex]

[tex]ABD = 30 + 18 + 48[/tex]

[tex]ABD = 96[/tex]

Hence;

m∠ABD = 96

Q&A Education