Given segment AB with points (-4, 8) and (6, 3) respectively. Find the coordinates of point P that partitions Segment AB in the ratio 3:2. The answer should be entered in the form (x,y) with out any spaces between characters.

Respuesta :

Answer:

[tex]P = (2,5)[/tex]

Step-by-step explanation:

Given

[tex]A(-4,8)[/tex]

[tex]B(6,3)[/tex]

[tex]m:n = 3 : 2[/tex]

Required

Determine P

Since P divides the segment into 3:2, P is calculated using

[tex]P = (\frac{nx_1 +m x_2}{m+n},\frac{ny_1 + my_2}{m+n})[/tex]

Where

[tex](x_1,y_1) = (-4,8)[/tex]

[tex](x_2,y_2) = (6,3)[/tex]

[tex]m:n = 3 : 2[/tex]

Substitute these values in the above formula:

[tex]P = (\frac{2 * -4 +3 * 6}{3 + 2},\frac{2 * 8 + 3 * 3}{3 + 2})[/tex]

[tex]P = (\frac{-8 +18}{3 + 2},\frac{16 + 9}{3 + 2})[/tex]

[tex]P = (\frac{10}{5},\frac{25}{5})[/tex]

[tex]P = (2,5)[/tex]

Q&A Education